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Abstract—The Rayleigh flat fading channel at low SNR is
considered. With full channel state information (CSI) at the
transmitter and receiver, its capacity is shown to be essentially

������ � nats/symbol, as SNR goes to zero. In fact, this
rate can be achieved with a just one bit of CSI at the transmitter
(per fading realization) and with no receiver CSI. The capacity for
the case of noisy transmitter CSI is also found. Then a Rayleigh
block fading channel of coherence interval � � �� is consid-
ered1 which has causal feedback and no a priori CSI. A training
based scheme is proposed for such channels, which achieves a rate
of ��� nats/symbol in the limit of small SNR and large .
Thus, when coherence interval is of the order � , without
any a priori CSI at either end, the capacity with full CSI at both
ends is achievable. For smaller values of , a rate of ���
nats/symbol is shown to be achievable.

Index Terms—Block fading, channel state information, coher-
ence interval, fading channel, feedback capacity, low SNR, noisy
CSI, wideband.

I. INTRODUCTION

F EEDBACK does not improve the capacity of memory-
less channels. However, for channels with memory, feed-

back2 can enhance the capacity. Based on the results in Massey’s
beautiful paper [1] and Fano’s inequality, the rate3 of a code
of length can be upper bounded by its directed information

and its error probability as follows:

(1)
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1A block fading channel of coherence interval � means that the channel state
remains constant for each block � consecutive symbols. At the end of these �
symbols, the channel state takes a new realization independently of its history.
Each such channel state realization is Rayleigh distributed.

2The term feedback will mean perfect feedback with unit delay unless stated
otherwise.

3Unless stated otherwise, the units of rate are nats/symbol and ������ denotes
the natural logarithm.

where denotes the set of all feedback codes of length ,
and denote the input and output of the channel at time

, and denotes the sequence of inputs .
For reliable communication, the error probability vanishes
to 0 as tends to infinity and the above upper bound becomes

(2)

Although the directed information gives an analytical expres-
sion, its optimization over all feedback codes is a difficult
problem for most channels. Moreover, this optimization needs
to be done for all for analyzing feedback capacity. Hence
the feedback capacity and optimal coding strategies for most
channels with memory are unknown, besides few notable
exceptions such as [2]–[4].

This paper considers a simple feedback channel with
memory, namely the Rayleigh flat fading channel. Moreover,
we will assume a simple block structure on the sequence of
states. This structure has the same state within blocks of a
fixed length (say ) and the states over different blocks are
independent.

Compared to the feedback problem, channels with memory
are better understood if the channel state information (CSI) is
already available at the receiver and/or transmitter4. We first
consider the no feedback case of the channel of interest, the
Rayleigh flat fading channel

(3)

where , , , and are complex random variables. The
channel state is Rayleigh distributed and the additive white
noise is independent of all other random variables. We
denote a zero mean complex circularly symmetric Gaussian
random variable with variance as , so we have

. The transmit power is constrained as
, where denotes expectation. In Section II,

the channel state is assumed to change i.i.d. for each symbol.
In Section III, we assume a i.i.d. block fading model for ,
where remains constant for symbols and then changes in an
i.i.d. manner.

For the case of full CSI (knowledge of ) at the receiver and
transmitter, the capacity is given by water-filling over time [5].
At high SNR, capacity improvement due to such water-filling
is negligible. At low SNR on the other hand, the ratio of the
capacity with and without water-filling goes to infinity in the
limit of small [6]. Thus full transmitter CSI can provide
significant capacity gains at low SNR through. It is not clear
whether full CSI is necessary for achieving this significant gain

4We denote channel state side information at the transmitter/receiver by CSIT/
CSIR.
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at low SNR. We address this question by analyzing the effects
of incomplete and/or noisy CSI.

With full CSI at both ends, the fading channel with i.i.d.
fading or i.i.d. block fading is converted into a set of parallel
memoryless channels [5], each corresponding to a certain value
of the state . Its capacity is the same with or without feedback.
Hence the capacity with full CSI is an upper bound to the ca-
pacity of the feedback channel without any a priori CSI. Con-
sider the block fading Rayleigh channel with feedback5 with no
a priori CSI. If the coherence interval is large enough, a neg-
ligible fraction of the total energy and time in each block can be
spent in training and essentially perfect channel state estimates
can be obtained at the receiver in each block. The same esti-
mates also become available at the transmitter due to feedback.
Thus, the capacity with full CSI can be achieved.

However, for smaller values of , obtaining such estimates
gets difficult due to low SNR. Even using all the available en-
ergy in a block for training may not be sufficient for channel
state estimation. For example in the extreme case of ,
no CSI can be obtained at all. The value of feedback reduces
monotonically with . We aim to understand this effect more
precisely-for this purpose we consider the joint asymptote of
and SNR, where grows to infinity as SNR vanishes to zero.
Section IV concludes with some engineering guidelines.

A. Summary of Results

This paper focuses on the low SNR limit for this fading
channel. We use the notation as a short-
hand6 for

Note that this is tighter definition of than
for approxi-

mating with . Such a definition is too loose an
approximation at low SNR, because most limits tend to zero
anyway with SNR.

• Next section discusses the capacity of this channel without
feedback in different cases of available CSI at the trans-
mitter/receiver. With full CSI at the transmitter and re-
ceiver, let denote the capacity of the Rayleigh
fading channel

Moreover, such rate is achievable even with a single bit of
CSIT and no CSIR.

• We then address the effect of noisy CSI, where the actual
channel state is a noisier version of the channel state
estimate at the transmitter and receiver:

5The block fading Rayleigh channel with feedback, coherence interval � , and
no a priori CSI is simply called as the feedback channel henceforth.

6Inequalities, �� � � �� � and �� � � �� � are similarly
defined.

where is the channel state estimate and
is the estimation noise which indepen-

dent of . The channel capacity in this case be denoted by

Again, only one bit information of at the transmitter is
enough to achieve such a rate without any receiver CSI.

• Using the results in first two sections, the third section con-
siders a wideband fading channel with feedback but no a
priori CSI. In the joint asymptote where grows to in-
finity as goes to 0, a rate as follows can be
achieved:

If the only utility of feedback is for power control, a
simple genie argument is used to show that no better rate
is achievable. Even without any such assumption on the
utility of feedback, is conjectured to be the
feedback capacity.

II. VALUE OF THE CHANNEL STATE INFORMATION

This section considers the case where channel state changes
i.i.d. for every symbol. For the full CSI case, the energy effi-
ciency, i.e., capacity per unit energy is known to go to infinity
in the low SNR limit [6]. Using properties of the Rayleigh dis-
tribution, we first prove that it goes to infinity as
when the goes to zero. Later we show how a single bit of
CSIT can achieve the same energy efficiency. In Section II-B,
we move to noisy CSI and show how the energy efficiency de-
creases with the level of noise in CSI.

Lemma 1: With full CSI at the transmitter and receiver, ca-
pacity of the Rayleigh fading channel in satisfies

Proof: For a channel strength of , the water-filling
solution puts amount of power7, where is
the channel gain threshold chosen to satisfy the average power
constraint

(4)
because has an exponentially distribution of mean 1. Since a
channel state of strength contributes

to capacity, the overall channel capacity
in terms of the channel strength threshold is given by
defined as follows:

(5)

7The function ��� � � for positive � and zero otherwise.
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We first show that the channel strength threshold satisfying
(4) can be tightly approximated by
as goes to 0. The RHS of (4) can be written as ,
where is defined as

(6)

(7)

Note that for all , this power lies between and
defined as follows:

Now substitute in for
some . It satisfies

Now substitute in

. It satisfies

Considering that is a strictly decreasing function,
should lie between and . Both and are equal to

up to an additive constant. Hence
also equals up to an additive constant
as .

Noting that is a decreasing function and
gives

We can verify that

The lemma follows as arbitrarily small can be chosen.

Now we show that the same result follows when a
simple On-Off power control is used instead of the optimal
water-filling. This On-Off scheme allocates a constant nonzero
power level for any channel strength and zero power
otherwise. This threshold for channel strength is equal to

.

Lemma 2: In a Rayleigh fading channel with full CSI at both
ends, the achievable rate by an On-Off power alloca-
tion (instead of the optimal water-filling) satisfies

Proof: An On-Off power control strategy is employed. It
transmits at a nonzero power level for all

and keeps silent otherwise. Since
is exponentially distributed with mean 1, the nonzero power

level . The achievable rate with this strategy
equals

Note that goes to zero as with . Hence,
. It is easy to see that the same proof also

holds for for any .

Note that almost always the received SNR in the above
scheme, given by , goes to zero with . This explains
the capacity achieving nature of the strategy. The channel
state is almost always in the linear region, where the rate and
received energy have a linear relationship. This gives an easy
guiding principle for the low SNR asymptote of our interest:
Stay in the linear region as much as possible.

The above power allocation only needed one bit of CSI at
the transmitter for each fading realization. This bit indicated
whether or not the channel strength is better than the threshold

. Thus at low SNR, the capacity with only one bit of CSI at the
transmitter is same as that with full CSI at the transmitter. This
case is the “limited feedback” channel studied in [7], where the
receiver has full CSI and the transmitter has its quantized ver-
sion. Thus at low SNR, capacity of the limited feedback channel
equals the capacity with full CSI at the transmitter.

Remark 1: Lemma 1 and 2 hold true even when no CSI
is available at the receiver. [10] proves this by an orthogonal
coding scheme where the receiver employs energy detection for
decoding and energy is transmitted only where fading is suffi-
ciently large8.

Remark 2: For the channels in Lemma 1 and 2, [6] had shown
previously that the ratio of the capacity and goes to infinity
with or without any receiver CSI. This behavior is described
more precisely by Lemma 1: its goes to infinity as .

8More specifically, Theorem 1 in [10] considers a Rayleigh fading wideband
channel with causal transmitted CSI and no receiver CSI. It has a bandwidth of
� symbols per unit time where each symbol � goes through the fading channel
� � � � �� , where � and � are i.i.d. �� ��� ��. If the transmitter has
unit power available per unit time, the capacity of in the limit of large bandwidth
� equals � � ��	� nats per unit time and is unchanged if even the receiver
has full CSI. Thus, the capacity per unit symbol is � nats. Since ���
denotes the per symbol, this capacity is the same as ��	��� �
in Lemmas 1 and 2.
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A. Partial Transmitter CSI

Up to this point, we studied the channel capacity when the
transmitter has noiseless CSI. Even the one bit CSI case as-
sumed no noise, that is, the channel was indeed better or worse
than the threshold if the CSI conveyed so. However it may im-
possible to obtain such noiseless CSI. For example, if a channel
is trained with energy for obtaining CSI, the channel state es-
timate is noisy for any finite training energy . The actual
channel state realization in this case is given by the sum of
two components: the channel state estimate and the estima-
tion error . The channel equation in this case is given by

(8)

We assume the channel state estimate and the
error is an independent . This model of inde-
pendent complex Gaussian known part and unknown part
is motivated by the way channel estimation is done in practice:
by sending training signals. For Rayleigh channel , the MMSE
channel estimate obtained form such training signal (i.e., ) and
the corresponding estimation error (i.e., ) are independent of
each other. This has motivated the channel model in (8) above.
Note that when a training signal of energy is used, the MMSE
error variance for the channel state estimate equals
which is the same in the channel model above. Thus, the
channel model in (8) corresponds to a training signal with en-
ergy .

We know that corresponds to the full CSI case and
is no CSI case. At low SNR, their channel capacities

are essentially and , respectively. We ex-
pect intuitively that the capacity should increase with . The
following theorem shows how exactly it increases with at low
SNR. It considers between the two extremes cases of
and and shows that the noisy channel state estimate es-
sentially reduces the capacity by a factor .

Theorem 3: Consider the channel , where
and are independent Rayleigh random variable with variance

and , respectively. The transmitter only knows
and the receiver knows both and . The capacity of
this channel for any fixed satisfies

Before going to the detailed proof, we sketch some intuition
behind it. The capacity for channel in (8) with input power

can be upper bounded by the sum capacity of two sep-
arate channels-one with perfect transmitter CSI and one with
no transmitter CSI. The input power available for each of these
two channels is (so total input power is ). The first
channel , where is perfectly
known at the transmitter and . The other channel
is , where the transmitter has no knowledge of

and . As we have seen already,
the capacity of the first channel is and

that of the second channel is . Hence the capacity of
the original channel is at most

.
For achieving this upper bound, the transmitter simply ig-

nores the unknown part of fading and pretends that the actual
channel is equal to its known part . Then it applies essentially
the same waterfilling strategy for the case of full transmitter CSI
based on .

Proof: We first show an upper bound on the capacity of
this channel

because the transmitter only knows , which is independent of
, the transmit power is a function of only, so let us denote it by

. The maximization above is over all such power allocation
functions satisfying the input power constraint. Let
denote the optimum choice of . Now Jensen’s inequality
and the independence between and implies

The first term above is the capacity of AWGN channel with
signal to noise ratio of . The second term
is the capacity of a Rayleigh fading channel with transmit power

(9)

where is fully known at both ends. The optimal is
given by the water-filling solution. The above channel can be
converted to the standard unit variance Rayleigh fading channel
by dividing both sides of (9) by . This increases the noise
power to and hence reduces the SNR to . Now ap-
plying Lemma 1 gives

(10)

Hence, we can write

(11)

For any fixed , this implies

(12)

(13)

(14)
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Fig. 1. Training scheme for achievability.

For the lower bound to the capacity, we give an achievable
scheme as follows. Transmit uniform power when the known
channel’s strength exceeds a threshold defined as follows:

(15)

Since is an exponential random variable with mean , the
probability of is given by . Hence the
transmit power when is given by . The
achievable rate of this power allocation is

It is easy to check that goes to zero with
for our choice of in (15). Hence

We can bring this lower bound arbitrarily close to 1 by choosing
large enough . Thus, for any , we get

The theorem is proved because arbitrarily small can be chosen.

On similar lines of Lemma 2, this achievability proof also
shows that only 1 bit about is needed at the transmitter. This bit
should indicate whether or not is greater than the threshold

.

Remark 3: Note that the threshold is essentially times
the threshold for the full CSI case. Hence, the probability

of transmitting nonzero power is the same as
that in the full CSI case. Thu,s although the fraction of channel
states used is same as the full CSI case, the noise in the trans-
mitter CSI reduces the capacity by a factor of .

III. FEEDBACK CHANNEL WITH BLOCK FADING

Now consider the block fading case with coherence interval .
Intuitively, we expect that the channel capacity should increase
with the coherence time. We study how exactly it increases with

in the limit of large . More precisely, we assume as
, for example . One special

case of this assumption is as in [11].

Theorem 4: For , as , a data rate
is achievable such that

Proof: We train one out of every
fading blocks, where denotes a large but fixed the training
energy. This periodic placement of trained blocks (1 after
fading blocks) is illustrated in the top picture in Fig. 1. The
training signal is sent on the first symbol of the training block
(the shaded strip in Fig. 1 at the beginning of each training
block). The remaining symbols in each training block are
used for communication only. The positions of these period-
ically spaced training blocks are predetermined and conveyed
to both the ends. The transmitter is silent ( ) throughout
any nontraining block.

For each trained block, the total energy accumulated over
blocks equals . This is be-

cause the transmitter is silent throughout any untrained fading
block. Since the training signal has energy , the fraction of this
total energy used for the training signal equals and can
be ignored as is large. Hence, the average SNR available in
the trained blocks equals

After using the first symbol in each training block for training,
for the remaining symbols in that block, we get the channel
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with partial CSI in Theorem 3. Hence, we can apply the com-
munication scheme in Theorem 3 over all the trained blocks.
Recall that a training energy of corresponds to in
the previous section. Applying Theorem 3 with im-
plies that essentially a rate of is achieved
in every trained block.

However, recall that only fraction of the
blocks are trained. Moreover, in each training block of length ,
only symbols are used for communication (since its first
symbol is reserved for the training signal). Hence, the overall
rate achieved with this scheme satisfies

Choosing arbitrarily large training energy yields the proof.

To interpret this result, let us assume that (roughly) unit en-
ergy is needed to train a channel block perfectly. This is an
optimistic assumption because perfect CSI cannot be obtained
with finite training energy, however such finite training energy
can achieve sufficiently accurate CSI. Also, assume that 1 out
of every trained blocks is “good”, i.e., above the channel
threshold. This channel threshold should be due to ex-
ponential nature of Rayleigh distribution. Note that training
energy should be spent for finding one good channel state. As-
sume that the received SNR in the good block is given by ,
which is much smaller than 1 to ensure a linear rate in received
power. Since the transmit power is ratio of the received power

to the channel gain (essentially ), the total transmit
power in the good block is essentially given by .

For the training to be effectively free, the training energy
should be a small fraction of the communication energy. Since
all the communication is done in the “good” channel state (see
Fig. 1), the energy transmitted in the good channel state
should be much larger than . Thus, should be larger than

. Hence the channel strength threshold , i.e., the
energy efficiency cannot be larger than .

Note that very few bits of feedback are needed on average in
this achievability proof. Feedback is only needed for the trained
channel blocks. Moreover, as seen in the previous section, only
one bit of feedback (per fading realization) about the trained
channel block is good enough for achieving its capacity at low
SNR. This bit should indicate whether or not the channel state
estimate is better than the threshold . Thus, on average, a
feedback of bits per block or bits per
symbol is required. Thus a very weak (but reliable) reverse
channel is sufficient for this achievable strategy.

Remark 4: The same scheme of training rarely with arbi-
trarily good quality can be applied to a channel with finite sup-
port fading whose maximum channel strength equals .
For any coherence interval going to infinity with going to
zero, this scheme achieves the capacity of this channel with full
CSI at both ends. Equivalently, its capacity satisfies

.
For , the energy per coherent block .

Hence, essentially perfect CSI can be obtained by spending a
negligible fraction this energy on training each block. Hence
the capacity with full CSI at both ends (i.e., essentially a rate of

) is achievable by training. The above theorem
shows that for any (not only ), full
CSI capacity is achievable by the proposed peaky training based
scheme.

Since the capacity with full CSI at both ends is an upper bound
to the capacity of this feedback channel, the strategy for The-
orem 4 achieves the capacity of this feedback channel when

. For smaller coherence interval, we need a tighter upper
bound than the capacity with full CSI at both ends. For achieving
the feedback capacity, assuming that the transmitter only needs
the feedback to obtain CSI at the transmitter and correspond-
ingly adjust the transmitted power, the following theorem gives
an upper bound to the achievable rate. First, let us define pre-
cisely the notion of using feedback only for power control.

Definition 1: Power-Control-Only feedback codes: This is a
class of feedback codes which use feedback only to obtain CSI
at the transmitter and correspondingly adjust the transmitted
power. Mathematically, these codes satisfy the following
Markov condition , where
denotes the message to be transmitted and denotes the
transmitter’s estimate of the channel state . This estimate
is based on .Thus the only influence of past inputs
and outputs on the next input is through the channel state
estimate .

For Power-Control-Only feedback codes, the upper bound in
the next theorem matches with the achievable rate when grows
to infinity with .

Theorem 5: For Power-Control-Only feedback codes, the
capacity of the block fading Rayleigh channel with feedback
satisfies

for any that goes to infinity as tends to 0 such that
.

Proof: The achievability part of this capacity result was
already proved in Theorem 4, so we only need to prove the con-
verse part now. We show that achievable rate for any Power-
Control-Only feedback code is upper bounded as

for any going to infinity with SNR going to 0.
Assume a genie which provides us with an extra parallel

channel called the training channel for channel state estimation.
This channel always takes the same value as the original channel.
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The genie also provides us free additional transmit power of
for this channel. Since the quality of the channel state estimation
only depends on the training energy, we may assume that all
the training is done in the first symbol of the fading block of the
training channel. Moreover, we assume that the estimate from
the training channel is available to the communications channel
just before its corresponding block starts.

Another genie tells us the exact channel state to the trans-
mitter when the training energy . Now we prove that
the average power available for training should be only used for
training perfectly i.e., training with energy 1.

By (13), the capacity of a Rayleigh channel with es-
timation error at the transmitter is upper bounded by

in the limit of low SNR. Now consider a distri-
bution of training energies on the training channel. We assume
this to be a discrete distribution for simplicity, but generaliza-
tion to continuous distributions is not difficult. Say training with
energy is performed with probability and the communi-
cation SNR for this training level equals . Assume that
nonperfect training is also possible in this distribution, that is,
some has . Since , this training
energy yields a rate of

(16)

(17)

(18)

The last step follows because is negligible compared to
in the limit of low SNR. The above inequality

implies the training with with probability achieves
a rate (given by ) worse than training perfectly
with with probability [which achieves a rate

)]. The total training energy for training
with probability at energy is , which is the same as
the energy required for training with probability with

. Thus any distribution of training energies can be improved (in
terms of rate) by shifting all the imperfect trainings to perfect
trainings with a lower probability. If indicates the probability
of 0 training energy, the total achievable rate of the original
suboptimal training distribution is upper bounded from (17) as

Note that the average SNR, at most equals .
Now noting that is a concave increasing function of

gives an upper bound on the RHS above as

This corresponds to the fact that time-sharing between various
codes at power is not better than using one single code
with the combined power.

We have proved that only perfect training should be per-
formed which takes unit energy on this genie-aided channel.
The maximum probability of this perfect training is given by
the total training energy constraint . Since the
above upper bound is increasing in , we chose the maximum
possible . Hence, the capacity of this channel satisfies

Note that the total power used for this proof is twice the avail-
able power. The training channel uses units of power and
communication over trained channel blocks uses another
units.

We conjecture that even if the utility of feedback is
not restricted to power control, the same upper bound of

holds for general feedback strategies.
Since this upper bound is already shown to be achievable,
this conjecture is equivalent to claiming that the feedback
capacity of this block fading channel is . The
key part missing in proving this conjecture is showing that for
any capacity achieving code, peakiness9 of the received power
should increase monotonically as the coherence interval (and
hence the ability to estimate the channel) increases.

IV. CONCLUDING REMARKS

At low SNR, the engineering rules learned for block fading
channels with feedback are as follows.

1) The received SNR should be small as often as possible to
take advantage of the linear rate-power behavior.

2) Whenever training is performed, it should be almost
perfect.

3) The energy spent in training should be a small fraction of
the total available energy.

4) All the communication should take over the trained blocks.
It is worth mentioning that similar analysis can be applied

even when the fading distribution is not Rayleigh. Results in
those cases will depend on the tail behaviour of the fading distri-
bution. For example, let the tail of the fading gain distribution be
a polynomial, that is, probability behaves as
for a given . Using results in [10], the feedback capacity
in this case is expected to be essentially nats/symbol.

Second, we remark on a one step Gauss-Markov fading with
innovation rate going to zero with . This can be converted
to a block fading of essentially a coherence interval of . Such
conversion ignores the correlation between adjacent blocks. By
Theorem 4, a rate of can be achieved at low SNR.
However, optimality of such conversion to block fading is not
known.

Finally, this setup can be used for the wideband broadcast
fading channel with a feedback link from each receiver. Here,
a single training pulse is enough to estimate all the users’

9We define peakiness of the received power as the ratio of its second moment
to first moment.
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channels. Assuming the various users are independently faded,
the probability of finding at least one user with strong channel
state is increased. Thus, training is more beneficial than before.
For the case of a fixed number of users, the sum feedback
capacity is not expected to change much from the single user
case. Nonetheless, for the case of a large number of users
(which grows to infinity as vanishes), the broadcast nature
of training pulses can improve the sum capacity significantly.
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